Bildbeschreibung und Urheberrecht

Richtungsvektor


Geraden | Ebenen


Ein Richtungsvektor gehört zur Definition von Geraden und Ebenen in der Vektorrechnung. Er verläuft immer parallel zur Geraden oder Ebene. Er sagt aber nichts darüber, wo genau die Gerade oder Ebene im Raum liegt (das macht der Stützvektor).

Definition


◦ Der Richtungsvektor einer Geraden kann beliebig lang sein.
◦ Einzige Ausnahme: der darf nicht der Nullvektor mit der Länge 0 sein.
◦ Er muss parallel zu der Geraden verlaufen.

Berechnung


◦ Kennt man zwei Punkte der Geraden, kann der Richtungsvektor leicht berechnet werden.
◦ Man bildet dazu einfach einen Vektor vom ersten zum zweiten Punkt.
◦ Man kann auch einen Vektor vom zweiten zum ersten Punkt bilden.
◦ Rechnerisch meint das: die Komponenten voneinander abziehen.

Beispiele


◦ Man hat zwei Punkte auf einer Geraden: (4|0|10) und (4|20|10).
◦ Dann ist ein möglicher Richtungsvektor (0|20|0).
◦ Ein anderer wäre z. B. (0|3|0).

Siehe auch


=> Parameterform der Geraden
=> Vektorrechnung
=> Kollinear





© Lernwerkstatt Aachen GbR, 2020