Gleichungen formal lösen

Was es meint, wozu es gut ist und erste Tipps

Was meint überhaupt "Gleichung lösen"?

Bei einer Gleichung hat man immer ein Gleichheitszeichen. Links und rechts vom Gleichhheitszeichen stehen dann Rechenausdrücke (Terme), oft mit einem x dabei. Hier ist ein Beispiel: 4x=12. Das x nennt man auch Platzhalter, Variable oder Unbekannte. Für das x darf man erst einmal jede Zahl einsetzen. Bei manchen Zahlen geht die Gleichung dann richtig auf, bei anderen nicht. Setzt man die 2 ein, kommt links eine 8 heraus. 8 ist aber nicht 12, also geht die Gleichung nicht auf. Setzt man aber die 3 ein, kommt auch links die 12 heraus. Jetzt geht die Gleichung auf. Eine Zahl, die man für x einsetzen kann, sodass die Gleichung aufgeht, heißt "Lösung" der Gleichung.

Warum probiert man nicht immer einfach nur?

Ja. Bei einfachen Gleichungen sieht man das Ergebnis oft sofort. Einfach wäre zum Beispiel 4x=20. Bei etwas schwereren muss man ein Bißchen überlegen. Etwas schwerer wäre zum Beispiel 4x+18=56. Es gibt aber auch richtig schwere wie 70x-45=10x-150. Auch hier könnte man probieren, aber es würde sehr lange dauern. Bei sehr schwierigen Gleichungen lässt man sogar Computer rechnen. Selbst schnelle Computer brauchen dann manchmal mehrere Stunden oder sogar Tage. Also: probieren ginge theoretisch immer, kann aber sehr lange dauern. Wenn das der Fall ist, kann man die Gleichungen auch formal lösen.

Was meint "formal" lösen?

Formal lösen meint vor allem erst einmal, dass man nicht probiert. Man setzt für x erst einmal keine Zahlen ein, um zu gucken ob es aufgeht. Stattdessen vereinfacht man die Gleichung so lange, bis man sie durch probieren lösen kann oder sofort das Ergebnis sieht. Zum formalen Lösen benutzt man sogenannte "Äquivalenzumformungen". Das sind Rechenumfungen, die ich mit beiden Seiten der Gleichung machen darf. Mit Übung findet man dann immer Äquivalenzumformungen, mit denen man schnell die Lösung findet.

Welche Äquivalenzumformungen sind erlaubt?

◦ Äquivalenzumformungen muss ich immer mit beiden Seiten gleichzeitig machen.
◦ Hier kommen die häufigsten, mit denen man schon viel lösen kann:
◦ Man darf auf beiden Seiten die gleiche Zahl hinzuaddieren.
◦ Man darf auf beiden Seiten die gleiche Zahl abziehen.
◦ Man darf beide Seiten mit der gleichen Zahl malnehmen (außer 0).
◦ Man darf beide Seiten durch die gleiche Zahl teilen (außer 0).

Wie sieht ein Beispiel aus?

◦ Wir nehmen: 70x-45 = 10x-150
◦ Man versucht immer, alles mit x links zu haben.
◦ Links soll am Ende nur ein x alleine stehen.
◦ Rechts sollen nur Zahlen stehen, die man ausrechnen kann.
◦ Die Umformungen schreibt man nach einem senkrechten | hin.
◦ 70x-45 = 10x-150 | Beide Seiten um 10x vermindern ...
◦ 60x-45 = -150 | Beide Seiten um 45 erhöhen ...
◦ 60x = -105 | Beide Seiten durch 60 Seiten ...
◦ x = -105/60 | Rechte Seite ausrechnen ...
◦ x = -7/4 oder 1,75

Wie geht es weiter?

Wenn du erkannt hast, dass man manche Gleichungen kaum mehr durch probieren lösen kann, und dass es formal viel schneller geht, dann solltest du jetzt lernen, wie man die besten Äquivalenzumformungen findet.

Siehe auch

=> Lineare Gleichungen lösen [kommt in der Schule oft am Anfang]
=> Gleichungen lösen [Überblick zum ganzen Thema]








Startseite
Impressum
© 2019