lsg Bernoulli-Kette erkennen

a) Es handelt sich um eine Bernoulli-Kette mit der Länge n = 3. Ein Treffer ist das Ereignis 6. Die Trefferwahrscheinlichkeit ist in jeder Stufe gleich p = 1/6.

b) Es handelt sich nicht um eine Bernoulli-Kette, denn in jeder Stufe kann es 6 verschiedene Ergebnisse geben: { 1; 2 ; 3 ; 4 ; 5 ; 6 }. Bei einer Bernoulli-Kette müssen es aber genau zwei Ergebnisse pro Stufe sein.

c) Es handelt sich nicht um eine Bernoulli-Kette, da die Kugeln nicht zurückgelegt werden und sich dadurch die Wahrscheinlichkeit von Stufe zu Stufe ändert. Für eine Bernoulli-Kette muss die Wahrscheinlichkeit für einen Treffer in jeder Stufe gleich sein.

d) Es handelt sich um eine Bernoulli-Kette der Länge n = 4. Die Wahrscheinlichkeit für Treffer weiß ist durch das Zurücklegen konstant p = 3/10, für Treffer rot p = 7/10.

e) Es handelt sich um keine Bernoulli-Kette, da es in jeder Stufe drei Ergebnisse geben kann { 1 ; 2 ; 3 }. Für eine Bernoulli-Kette darf es nur zwei Ergebnisse pro Stufe geben.

f) Es handelt sich um eine Bernoulli-Kette der Länge n = 8. Als Treffer gilt die Zahl 3 mit p = 0,25. Die Wahrscheinlichkeit für einen Treffer bleibt in jeder Stufe gleich.

g) Es handelt sich um eine Bernoulli-Kette, wobei die Länge nicht festgelegt ist. Treffer ist die Zahl 4 mit der Trefferwahrscheinlichkeit p = 0,25. Die größtmögliche Kettenlänge ist 7.

Siehe auch:
=> lex [Erklärung]
=> qck [Aufgaben]






Startseite
Impressum
© 2019